Effects of metabolic blockade on intracellular calcium concentration in isolated ferret ventricular muscle.
نویسندگان
چکیده
Tension and intracellular free calcium concentration [( Ca2+]i) were measured in isolated ferret papillary muscles. When both anaerobic glycolysis and oxidative phosphorylation were prevented (metabolic blockade), there was a rapid decline of both developed tension and systolic [Ca2+]i signals. Subsequently, resting tension increased, and after a further delay, resting [Ca2+]i also rose. When oxidative metabolism was restarted after a period of metabolic blockade that was sufficient to elevate both resting tension and [Ca2+]i, a variable recovery of mechanical function occurred. In preparations that showed recovery, resting tension declined toward control level, and there was considerable recovery of developed tension. [Ca2+]i initially fell, but it then rose to a level similar to that at the end of the preceding period of metabolic blockade and exhibited large variations in amplitude with frequency components in the range 0.2-1 Hz. This elevated [Ca2+]i gradually declined. Arrhythmias were often present during this recovery period and appeared to be triggered by the spontaneous increases in [Ca2+]i. In preparations that failed to recover, resting tension remained elevated or increased, and developed tension showed little recovery. Such preparations showed larger rises in [Ca2+]i both during and after metabolic blockade, and [Ca2+]i continued to rise when oxidative metabolism was restarted. In experiments in which Na-Ca exchange was inhibited (by replacement of sodium by lithium or by the application of nickel), the rise of [Ca2+]i when oxidative metabolism was restarted was reduced, but recovery of mechanical function was improved. The correlation between elevated [Ca2+]i on reactivation of oxidative metabolism and failure of recovery of mechanical function suggests that elevated [Ca2+]i has a direct role in preventing the recovery of mechanical function.
منابع مشابه
Effects of sevoflurane on the intracellular Ca2+ transient in ferret cardiac muscle.
BACKGROUND Sevoflurane depresses myocardial contractility by decreasing transsarcolemmal Ca2+ influx. In skinned muscle fibers, sevoflurane affects actin-myosin cross-bridge cycling, which might contribute to the negative inotropic effect. It is uncertain to what extent decreases in Ca2+ sensitivity of the contractile proteins play a role in the negative inotropic effect of sevoflurane in intac...
متن کاملOkadaic acid, a protein phosphatase inhibitor, increases the calcium transients in isolated ferret ventricular muscle.
Okadaic acid is a protein phosphatase inhibitor which has been found to produce a marked positive inotropic effect in isolated cardiac muscle. Using aequorin-injected ferret papillary muscles, we demonstrate that the increase in tension seen with okadaic acid is accompanied by a simultaneous increase in the amplitude of the calcium transients. By comparison with the effects of changing the extr...
متن کاملEffect of temperature on the rise in intracellular sodium caused by calcium depletion in ferret ventricular muscle and the mechanism of the alleviation of the calcium paradox by hypothermia.
The effects of temperature over the range 37-10 degrees C on the responses of isolated ferret ventricular trabeculae to the depletion and repletion of bathing calcium has been investigated. Cooling is found to reduce the rate of rise of intracellular sodium activity (measured with an ion-sensitive microelectrode) induced by depletion of bathing divalent cations, without affecting the prolonged ...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEMD 53998 sensitizes the contractile proteins to calcium in intact ferret ventricular muscle.
EMD 53998 (a thiadiazinone) is an inotropic drug that produces a pronounced increase in the Ca2+ sensitivity of the contractile proteins in skinned cardiac fibers. The present study was undertaken to determine whether this effect on Ca2+ sensitivity could explain the increase in tension observed in intact ventricular muscle. The experiments were performed on isolated ferret papillary muscles th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 62 6 شماره
صفحات -
تاریخ انتشار 1988